Строение атома мышьяка электронная формула. Каталог файлов по химии

Главная / Материал для беседки

Выясним, как составить электронную формулу химического элемента. Этот вопрос является важным и актуальным, так как дает представление не только о строении, но и о предполагаемых физических и химических свойствах рассматриваемого атома.

Правила составления

Для того чтобы составить графическую и электронную формулу химического элемента, необходимо иметь представление о теории строения атома. Начнем с того, что есть два основных компонента атома: ядро и отрицательные электроны. Ядро включает в себя нейтроны, которые не имеют заряда, а также протоны, обладающие положительным зарядом.

Рассуждая, как составить и определить электронную формулу химического элемента, отметим, что для нахождения числа протонов в ядре, потребуется периодическая система Менделеева.

Номер элемента по порядку соответствует количеству протонов, находящихся в его ядре. Номер периода, в котором располагается атом, характеризует число энергетических слоев, располагаются на которых электроны.

Для определения количества нейтронов, лишенных электрического заряда, необходимо из величины относительной массы атома элемента, отнять его порядковый номер (количество протонов).

Инструкция

Для того чтобы понять, как составить электронную формулу химического элемента, рассмотрим правило заполнения отрицательными частицами подуровней, сформулированное Клечковским.

В зависимости от того, каким запасом свободной энергии обладают свободные орбитали, составляется ряд, характеризующий последовательность заполнения уровней электронами.

Каждая орбиталь содержит всего два электрона, которые располагаются антипараллельными спинами.

Для того чтобы выразить структуру электронных оболочек, применяют графические формулы. Как выглядят электронные формулы атомов химических элементов? Как составлять графические варианты? Эти вопросы включены в школьный курс химии, поэтому остановимся на них подробнее.

Существует определенная матрица (основа), которую используют при составлении графических формул. Для s-орбитали характерна только одна квантовая ячейка, в которой противоположно друг другу располагается два электрона. Их в графическом виде обозначаются стрелками. Для р-орбитали изображают три ячейки, в каждой также находится по два электрона, на d орбитали располагается десять электронов, а f заполняется четырнадцатью электронами.

Примеры составления электронных формул

Продолжим разговор о том, как составить электронную формулу химического элемента. Например, нужно составить графическую и электронную формулу для элемента марганца. Сначала определим положение данного элемента в периодической системе. Он имеет 25 порядковый номер, следовательно, в атоме располагается 25 электронов. Марганец - это элемент четвертого периода, следовательно, у него четыре энергетических уровня.

Как составить электронную формулу химического элемента? Записываем знак элемента, а также его порядковый номер. Пользуясь правилом Клечковского, распределяем по энергетическим уровням и подуровням электроны. Последовательно располагаем их на первом, втором, а также третьем уровне, вписывая в каждую ячейку по два электрона.

Далее суммируем их, получая 20 штук. Три уровня в полном объеме заполнены электронами, а на четвертом остается только пять электронов. Учитывая, что для каждого вида орбитали характерен свой запас энергии, оставшиеся электроны распределяем на 4s и 3d подуровень. В итоге готовая электронно-графическая формула для атома марганца имеет следующий вид:

1s2 / 2s2, 2p6 / 3s2, 3p6 / 4s2, 3d3

Практическое значение

С помощью электронно-графических формул можно наглядно увидеть число свободных (неспаренных) электронов, определяющих валентность данного химического элемента.

Предлагаем обобщенный алгоритм действий, с помощью которого можно составить электронно-графические формулы любых атомов, располагающихся в таблице Менделеева.

В первую очередь необходимо определить количество электронов, используя периодическую систему. Цифра периода указывает на численность энергетических уровней.

Принадлежность к определенной группе связана с количеством электронов, находящихся на наружном энергетическом уровне. Подразделяют уровни на подуровни, заполняют их с учетом правила Клечковского.

Заключение

Для того чтобы определить валентные возможности любого химического элемента, расположенного в таблице Менделеева, необходимо составить электронно-графическую формулу его атома. Алгоритм, приведенный выше, позволит справиться с поставленной задачей, определить возможные химические и физические свойства атома.

При написании электронных формул атомов элементов указывают энергетические уровни (значения главного квантового числа n в виде цифр – 1, 2, 3 и т.д.), энергетические подуровни (значения орбитального квантового числа l в виде букв – s , p , d , f ) и цифрой вверху указывают число электронов на данном подуровне.

Первым элементом в таблице Д.И. Менделеева является водород, следовательно, заряд ядра атома Н равен 1, в атоме только один электрон на s -подуровне первого уровня. Поэтому электронная формула атома водорода имеет вид:


Вторым элементом является гелий, в его атоме два электрона, поэтому электронная формула атома гелия – 2 Не 1s 2 . Первый период включает в себя только два элемента, так как заполняется электронами первый энергетический уровень, который могут занять только 2 электрона.

Третий по порядку элемент – литий – находится уже во втором периоде, следовательно, у него начинает заполняться электронами второй энергетический уровень (об этом мы говорили выше). Заполнение электронами второго уровня начинается с s -подуровня, поэтому электронная формула атома лития – 3 Li 1s 2 2s 1 . В атоме бериллия завершается заполнение электронами s -подуровня: 4 Ве 1s 2 2s 2 .

У последующих элементов 2-го периода продолжает заполняться электронами второй энергетический уровень, только теперь электронами заполняется р -подуровень: 5 В 1s 2 2s 2 2р 1 ; 6 С 1s 2 2s 2 2р 2 … 10 Ne 1s 2 2s 2 2р 6 .

У атома неона завершается заполнение электронами р -подуровня, этим элементом заканчивается второй период, в нем восемь электронов, так как на s - и р -подуровнях могут находиться только восемь электронов.

У элементов 3-го периода имеет место аналогичная последовательность заполнения электронами энергетических подуровней третьего уровня. Электронные формулы атомов некоторых элементов этого периода имеют вид:

11 Na 1s 2 2s 2 2р 6 3s 1 ; 12 Mg 1s 2 2s 2 2р 6 3s 2 ; 13 Al 1s 2 2s 2 2р 6 3s 2 3p 1 ;

14 Si 1s 2 2s 2 2р 6 3s 2 3p 2 ;…; 18 Ar 1s 2 2s 2 2р 6 3s 2 3p 6 .

Третий период, как и второй, заканчивается элементом (аргоном), у которого завершается заполнение электронами р –подуровня, хотя третий уровень включает в себя три подуровня (s , р , d ). Согласно приведенному выше порядку заполнения энергетических подуровней в соответствии с правилами Клечковского, энергия подуровня 3d больше энергии подуровня 4s , поэтому у следующего за аргоном атома калия и стоящего за ним атома кальция заполняется электронами 3s –подуровень четвертого уровня:

19 К 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 ; 20 Са 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 .

Начиная с 21-го элемента – скандия, в атомах элементов начинает заполняться электронами подуровень 3d . Электронные формулы атомов этих элементов имеют вид:


21 Sc 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 1 ; 22 Ti 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 2 .

В атомах 24-го элемента (хрома) и 29-го элемента (меди) наблюдается явление, называемое «проскоком» или «провалом» электрона: электрон с внешнего 4s –подуровня «проваливается» на 3d –подуровень, завершая заполнение его наполовину (у хрома) или полностью (у меди), что способствует бóльшей устойчивости атома:

24 Cr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 5 (вместо …4s 2 3d 4) и

29 Cu 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 10 (вместо …4s 2 3d 9).

Начиная с 31-го элемента – галлия, продолжается заполнение электронами 4-го уровня, теперь – р –подуровня:

31 Ga 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 1 …; 36 Кr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 6 .

Этим элементом и завершается четвертый период, который включает в себя уже 18 элементов.

Аналогичный порядок заполнения электронами энергетических подуровней имеет место в атомах элементов 5-го периода. У первых двух (рубидия и стронция) заполняется s –подуровень 5-го уровня, у последующих десяти элементов (с иттрия по кадмий) заполняется d –подуровень 4-го уровня; завершают период шесть элементов (с индия по ксенон), в атомах которых происходит заполнение электронами р –подуровня внешнего, пятого уровня. В периоде тоже 18 элементов.

У элементов шестого периода такой порядок заполнения нарушается. В начале периода, как обычно, находятся два элемента, в атомах которых заполняется электронами s –подуровень внешнего, шестого, уровня. У следующего за ними элемента – лантана – начинает заполняться электронами d –подуровень предыдущего уровня, т.е. 5d . На этом заполнение электронами 5d -подуровня прекращается и у следующих 14 элементов – с церия по лютеций – начинает заполняться f -подуровень 4-го уровня. Эти элементы включены все в одну клетку таблицы, а внизу приведен развернутый ряд этих элементов, называемых лантаноидами.

Начиная с 72-го элемента – гафния – по 80-й элемент – ртуть, продолжается заполнение электронами 5d –подуровня, и завершается период, как обычно шестью элементами (с таллия по радон), в атомах которых заполняется электронами р –подуровень внешнего, шестого, уровня. Это самый большой период, включающий в себя 32 элемента.

В атомах элементов седьмого, незавершенного, периода просматривается тот же порядок заполнения подуровней, что описан выше. Предоставляем студентам самим написать электронные формулы атомов элементов 5 – 7-го периодов с учетом всего сказанного выше.

Примечание: в некоторых учебных пособиях допускается другой порядок записи электронных формул атомов элементов: не в порядке их заполнения, а в соответствии с приводимым в таблице количеством электронов на каждом энергетическом уровне. Например, электронная формула атома мышьяка может иметь вид: As 1s 2 2s 2 2р 6 3s 2 3p 6 3d 10 4s 2 4p 3 .

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

Записывается в виде так называемых электронных формул. В электронных формулах буквами s, p, d, f обозначаются энергетические подуровни электронов; цифры впереди букв означают энергетический уровень, в котором находится данный электрон, а индекс вверху справа - число электронов на данном подуровне. Чтобы составить электронную формулу атома любого элемента, достаточно знать номер данного элемента в периодической системе и выполнить основные положения, которым подчиняется распределение электронов в атоме.

Структура электронной оболочки атома может быть изображена и в виде схемы размещения электронов по энергетическим ячейкам.

Для атомов железа такая схема имеет следующий вид:

На этой схеме наглядно видно выполнение правила Гунда . На Зd-подуровне максимальное количество, ячеек (четыре) заполнено неспаренными электронами. Изображение структуры электронной оболочки в атоме в виде электронных формул и в виде схем наглядно не отражает волновых свойств электрона.

Формулировка периодического закона в редакции Д.А. Менделеева : свойства простых тел, а так же формы и свойства соединений элементов находятся в периодической зависимости величины атомных весов элементов.

Современная формулировка Периодического закона : свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра их атомов.

Таким образом, положительный заряд ядра (а не атомная масса) оказался более точным аргументом, от которого зависят свойства элементов и их соединений

Валентность - это число химических связей, которым один атом связан с другим.
Валентные возможности атома определяются числом неспаренных электронов и наличием на внешнем уровне свободных атомных орбиталей. Строение наружных энергетических уровней атомов химических элементов и определяет в основном свойства их атомов. Поэтому эти уровни называют валентными. Электроны этих уровней, а иногда и предвнешних уровней могут принимать участие в образовании химических связей. Такие электроны также называют валентными.

Стехиометрическая валентность химического элемента- это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме.

Эквиваленты определяются по числу присоединённых или замещённых атомов водорода , поэтому стехиометрическая валентность равна числу атомов водорода, с которыми взаимодействует данный атом. Но свободно взаимодействуют не все элементы, а с кислородом - практически все, поэтому стехиометрическую валентность можно определить как удвоенное число присоединённых атомов кислорода.


Например, стехиометрическая валентность серы в сероводороде H 2 S равна 2, в оксиде SO 2 - 4 , в оксиде SO 3 -6.

При определении стехиометрической валентности элемента по формуле бинарного соединения следует руководствоваться правилом: суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком плюс (для металла или более электроположительного элемента в молекуле) или минус.

1. В простых веществах степень окисления элементов равна нулю.

2. Степень окисления фтора во всех соединениях равна -1. Остальные галогены (хлор, бром, иод) с металлами, водородом и другими более электроположительными элементами тоже имеют степень окисления -1, но в соединениях с более электроотрицательными элементами они имеют положительные значения степеней окисления.

3. Кислород в соединениях имеет степень окисления -2; исключением являются пероксид водорода Н 2 О 2 и его производные (Na 2 O 2 , BaO 2 и т.п., в которых кислород имеет степень окисления -1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2.

4. Щелочные элементы (Li, Na, K и др.) и элементы главной подгруппы второй группы Периодической системы (Be, Mg, Ca и др.) всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно.

5. Все элементы третьей группы, кроме таллия имеют постоянную степень окисления, равную номеру группы, т.е. +3.

6. Высшая степень окисления элемента равна номеру группы Периодической системы, а низшая - разности: № группы - 8. Например, высшая степень окисления азота (он расположен в пятой группе) равна +5 (в азотной кислоте и её солях), а низшая равна -3 (в аммиаке и солях аммония).

7. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду.

Эти правила можно использовать для определения неизвестной степени окисления элемента в соединении, если известны степени окисления остальных, и составления формул многоэлементных соединений.

Сте?пень окисле?ния (окислительное число, ) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность . Степень окисления атома равна численной величине электрического заряда, приписываемого атому в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов (то есть исходя из предположения, что соединение состоит только из ионов).

Степень окисления соответствует числу электронов, которое следует присоединить к положительному иону, чтобы восстановить его до нейтрального атома, или отнять от отрицательного иона, чтобы окислить его до нейтрального атома:

Al 3+ + 3e − → Al
S 2− → S + 2e − (S 2− − 2e − → S)

Свойства элементов, зависящие от строения электронной оболочки атома, изменяются по периодам и группам периодической системы. Поскольку в ряду элементов-аналогов электронные структуры лишь сходны, но не тождественны, то при переходе от одного элемента в группе к другому для них наблюдается не простое повторение свойств, а их более или менее отчетливо выраженное закономерное изменение.

Химическая природа элемента обусловлена способностью его атома терять или приобретать электроны. Эта способность количественно оценивается величинами энергий ионизации и сродства к электрону.

Энергией ионизации (Eи ) называется минимальное количество энергии, необходимое для отрыва и полного удаления электрона из атома в газовой фазе при T = 0

K без передачи освобожденному электрону кинетической энергии с превращением атома в положительно заряженный ион: Э + Eи = Э+ + e-. Энергия ионизации является положительной величиной и имеет наименьшие значения у атомов щелочных металлов и наибольшие у атомов благородных (инертных) газов.

Сродством к электрону (Ee ) называется энергия, выделяемая или поглощаемая при присоединении электрона атому в газовой фазе при T = 0

K с превращением атома в отрицательно заряженный ион без передачи частице кинетической энергии:

Э + e- = Э- + Ee.

Максимальным сродством к электрону обладают галогены, особенно фтор (Ee = -328 кДж/моль).

Величины Eи и Ee выражают в килоджоулях на моль (кДж/моль) или в электрон-вольтах на атом (эВ).

Способность связанного атома смещать к себе электроны химических связей, повышая около себя электронную плотность называется электроотрицательностью.

Это понятие в науку введено Л. Полингом . Электроотрицательность обозначается символом ÷ и характеризует стремление данного атома к присоединению электронов при образовании им химической связи.

По Р. Маликену электротрицательность атома оценивается полусуммой энергий ионизации и сродства к электрону свободных атом÷ = (Ee + Eи)/2

В периодах наблюдается общая тенденция роста энергии ионизации и электроотрицательности с ростом заряда ядра атома, в группах эти величины с увеличением порядкового номера элемента убывают.

Следует подчеркнуть, что элементу нельзя приписать постоянное значение электроотрицательности, так как оно зависит от многих факторов, в частности от валентного состояния элемента, типа соединения, в которое он входит, числа и вида атомов-соседей.

Атомные и ионные радиусы . Размеры атомов и ионов определяются размерами электронной оболочки. Согласно квантово-механическим представления электронная оболочка не имеет строго определенных границ. Поэтому за радиус свободного атома или иона можно принять теоретически рассчитанное расстояние от ядра до положения главного максимума плотности внешних электронных облаков. Это расстояние называется орбитальным радиусом. На практике обычно используют значения радиусов атомов и ионов, находящихся в соединениях, вычисленные исходя из экспериментальных данных. При этом различают ковалентные и металлические радиусы атомов.

Зависимость атомных и ионных радиусов от заряда ядра атома элемента и носит периодический характер . В периодах по мере увеличения атомного номера радиусы имеют тенденцию к уменьшению. Наибольшее уменьшение характерно для элементов малых периодов, поскольку у них заполняется внешний электронный уровень. В больших периодах в семействах d- и f- элементов это изменение менее резкое, так как у них заполнение электронов происходит в предпредвнешнем слое. В подгруппах радиусы атомов и однотипных ионов в общем увеличиваются.

Периодическая система элементов есть наглядный пример проявления различного рода периодичности в свойствах элементов, которая соблюдается по горизонтали (в периоде слева направо), по вертикали (в группе, например, сверху вниз), по диагонали, т.е. какое-то свойство атома усиливается или уменьшается, но периодичность сохраняется.

В периоде слева направо (→) увеличиваются окислительные и неметаллические свойства элементов, а восстановительные и металлические свойства уменьшаются. Так, из всех элементов 3 периода натрий будет самым активным металлом и самым сильным восстановителем, а хлор - самым сильным окислителем.

Химическая связь - это взаимное соединение атомов в молекуле, или кристаллической решетке, в результате действия между атомами электрических сил притяжения.

Это взаимодействие всех электронов и всех ядер, приводящих к образованию устойчивой, многоатомной системы (радикал, молекулярный ион, молекула, кристалл).

Химическая связь осуществляется валентными электронами. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному. Поэтому различают три основных типа химической связи: ковалентную, ионную, металлическую .Между молекулами возникает водородная связь, и происходят вандерваальсовые взаимодействия .

К основным характеристикам химической связи относятся:

- длина связи - это межъядерное расстояние между химически связанными атомами.

Она зависит от природы взаимодействующих атомов и от кратности связи. С увеличением кратности длина связи уменьшается, а, следовательно, увеличивается ее прочность;

- кратность связи - определяется числом электронных пар, связывающих два атома. С увеличением кратности энергия связи возрастает;

- угол связи - угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов;

Энергия связи Е СВ - это энергия, которая выделяется при образовании данной связи и затрачивается на ее разрыв, кДж/моль.

Ковалентная связь - Химическая связь, образованная путем обобществления пары электронов двумя атомами.

Объяснение химической связи возникновением общих электронных пар между атомами легло в основу спиновой теории валентности, инструментом которой является метод валентных связей (МВС) , открытый Льюисом в 1916 г. Для квантово-механического описания химической связи и строения молекул применяют ещё один метод - метод молекулярных орбиталей (ММО) .

Метод валентных связей

Основные принципы образования химической связи по МВС:

1. Химическая связь образуется за счет валентных (неспаренных) электронов.

2. Электроны с антипараллельными спинами, принадлежащие двум различным атомам, становятся общими.

3. Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается.

4. Основные силы, действующие в молекуле, имеют электрическое, кулоновское происхождение.

5. Связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Существует два механизма образования ковалентной связи:

Обменный механизм. Связь образована путем обобществления валентных электронов двух нейтральных атомов. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

Рис. 7. Обменный механизм образования ковалентной связи: а - неполярной; б - полярной

Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.

Соединения, образованные по донорно-акцепторному механизму, относятся к комплексным соединениям

Рис. 8. Донорно-акцепторный механизм образования ковалентной связи

Ковалентная связь имеет определенные характеристики.

Насыщаемость - свойство атомов образовывать строго определенное число ковалентных связей. Благодаря насыщаемости связей молекулы имеют определенный состав.

Направленность - т. е. связь образуется в направлении максимального перекрытия электронных облаков . Относительно линии соединяющей центры атомов образующих связь различают: σ и π(рис. 9): σ-связь - образована перекрыванием АО по линии соединяющей центры взаимодействующих атомов; π-связь - это связь, возникающая в направлении оси перпендикулярной прямой, соединяющей ядра атома. Направленность связи обусловливает пространственную структуру молекул, т. е. их геометрическую форму.

Гибридизация - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. Химическая связь, образуемая с участием электронов гибридных орбиталей, более прочная, чем связь с участием электронов негибридных s- и р-орбиталей, так как происходит большее перекрывание. Различают следующие виды гибридизации (рис. 10, табл. 31): sp-гибридизация - одна s-орбиталь и одна p-орбиталь превращаются в две одинаковые «гибридные» орбитали, угол между осями которых равен 180°. Молекулы, в которых осуществляется sp-гибридизация, имеют линейную геометрию (BeCl 2).

sp 2 -гибридизация - одна s-орбиталь и две p-орбитали превращаются в три одинаковые «гибридные» орбитали, угол между осями которых равен 120°. Молекулы, в которых осуществляется sp 2 -гибридизация, имеют плоскую геометрию (BF 3 , AlCl 3).

sp 3 -гибридизация - одна s-орбиталь и три p-орбитали превращаются в четыре одинаковые «гибридные» орбитали, угол между осями которых равен 109°28". Молекулы, в которых осуществляется sp 3 -гибридизация, имеют тетраэдрическую геометрию (CH 4 , NH 3).

Рис. 10. Виды гибридизаций валентных орбиталей: а - sp -гибридизация валентных орбиталей; б - sp 2 - гибридизация валентных орбиталей; в - sp 3 -гибридиза-ция валентных орбиталей

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
    • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
    • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
    • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
    • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
    • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
    • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
    • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
    • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
    • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

© 2024 pehorkapark.ru -- Виды беседок. Мебель. Веранды. Материал для беседки. Крыши