Коэффициент воздухопроницаемости строительных материалов. Воздухопроницаемость строительных материалов

Главная / Материал для беседки

Основополагающие федеральные документы СНиП 23-02-2003 «Тепловая защита зданий» и СП 23-101-2000 «Проектирование тепловой защиты зданий» оперируют понятиями воздухопроницаемости и паропроницаемости строительных материалов и конструкций, не выделяя изолирующих элементов из состава ограждающих конструкций.

Таблица 2: Сопротивление воздухопроницанию материалов и конструкций (приложение 9 СНиП II-3-79*)

Материалы и конструкции Толщина слоя, мм Rb, м² часПа/кг
Бетон сплошной без швов 100 19620
Газосиликат сплошной без швов 140 21
Кирпичная кладка из сплошного красного кирпича на цементно-песчаном растворе: толщиной в полкирпича в пустошовку 120 2
толщиной в полкирпича с расшивкой шва 120 22
толщиной в кирпич в пустошовку 250 18
Штукатурка цементно-песчаная 15 373
Штукатурка известковая 15 142
Обшивка из обрезных досок, соединенных впритык или в четверть 20-25 0,1
Обшивка из обрезных досок, соединенных в шпунт 20-25 1,5
Обшивка из досок двойная с прокладкой между обшивками строительной бумаги 50 98
Картон строительный 1,3 64
Обои бумажные обычные - 20
Листы асбоцементные с заделкой швов 6 196
Обшивка из жёстких древесно-волокнистых листов с заделкой швов 10 3,3
Обшивка из гипсовой сухой штукатурки с заделкой швов 10 20
Фанера клееная с заделкой швов 3-4 2940
Пенополистирол ПСБ 50-100 79
Пеностекло сплошное 120 воздухонепроницаемо
Рубероид 1,5 воздухонепроницаем
Толь 1,5 490
Плиты минераловатные жёсткие 50 2
Воздушные прослойки,слои сыпучих материалов (шлака, керамзита, пемзы и т. д.), слои рыхлых и волокнистых материалов (минеральной ваты, соломы, стружки) любые толщины 0

Воздухопроницаемость Gв (кг/м ² час) по СП 23-101-2000 представляет собой массовый расход воздуха в единицу времени через единицу площади поверхности ограждающей конструкции (слоя ветроизоляции) при разнице (перепаде) давлений воздуха на поверхности конструкции ∆рв (Па): Gв = (1/Rв) ∆рв , где Rв (м² час Па/кг) - сопротивление воздухопроницанию (см. таблицу 2), а обратная величина (1/Rв )(кг/м² час Па) - коэффициент воздухопроницаемости ограждающей конструкции. Воздухопроницаемость характеризует не материал, а слой материала или ограждающую конструкцию (слой изоляции) определённой толщины.

Напомним, что давление (перепад давления) 1 атм составляет 100 000Па (0,1 МПа). Перепады давления ∆рв на стене бани за счёт меньшей плотности горячего воздуха в бане ƿδ по сравнению с плотностью внешнего холодного воздуха ƿ0 равны Н(ƿ0 - ƿδ) и в бане высотой Н=3 м составят до 10Па. Перепады давления на стенах бани за счёт ветрового напора ƿ0 V ² составят 1Па при скорости ветра V = 1 м/сек (штиль) и 100Па при скорости ветра V = 10 м/сек.

Введенная таким образом воздухопроницаемость представляет собой ветропроницаемость (продуваемость), способность пропускать массы движущегося воздуха.

Как видно из таблицы 2, воздухопроницаемость очень сильно зависит от качества строительных работ: укладка кирпича с заполнением швов (расшивкой) приводит к снижению воздухопроницаемости кладки в 10 раз по сравнению со случаем укладки кирпича обычным способом - в пустошовку. Воздух при этом в основном проходит вовсе не через кирпич, а через неплотности шва (каналы, пустоты, щели, трещины).

Методы определения сопротивления воздухопроницанию по ГОСТ 25891-83, ГОСТ 31167-2003, ГОСТ 26602.2-99 предусматривают непосредственное измерение расходов воздуха через материал или конструкцию при различных перепадах давления воздуха (до 700 Па). На специальных стендах с помощью насоса-воздуходувки 1 нагнетается воздух в измерительную камеру 3, к которой герметично пристыковывается изучаемая конструкция 5, например, окно заводского изготовления (рис. 17). По зависимости расхода воздуха Gв по ротаметру 2 от избыточного давления в камере ∆ƿв строят кривую воздухопроницаемости конструкции (рис. 18).

Рис. 18. Зависимость массового потока воздуха (скорости фильтрации, массового расхода) через воздухопроницаемую строительную конструкцию от перепада давления воздуха на поверхностях конструкции. 1 - прямая для ламинарных вязкостных потоков воздуха (через пористые стены без щелей), 2 - кривая для турбулентных инерционных потоков воздуха через конструкции со щелями (окна, двери) или отверстиями (продухами).

В случае воздухопроницаемости стен с многочисленными мелкими каналами, щелями, порами воздух движется через стену в вязком режиме ламинарно (без турбулентностей, завихрений), вследствие чего зависимость Gв от ∆рв имеет линейный вид Gв = (1/Rв ) ∆pв . При наличии крупных щелей воздух движется в инерционных режимах (турбулентных), при которых силы вязкости не существенны. Зависимость Gв от ∆рв в инерционных режимах имеет степенной вид Gв = (1/Rв) ∆рв0,5 . Реально же в случае окон и дверей наблюдается переходный режим Gв = (1/R1) ∆pв n, где показатель степени n в СНиП 23-02-2003 условно принят равным 2/3 (0,66). Иными словами, при больших напорах ветра окна начинают «запираться» (также, например, как и дымовые трубы при большой скорости истечения дымовых газов), и всё большую роль начинает играть продуваемость стен (см. рис. 18).

Изучение таблицы 2 показывает, что обычные дощатые стены (без прослоек бумаги, пергамина или фольги), засыпанные стружкой (соломой, минеральной ватой, шлаком, керамзитом) с сопротивлением воздухопроницанию на уровне 0,1 м² час Па/кг и менее никак не могут защитить от ветра. Даже при штиле при скоростях набегающих воздушных потоков 1 м/сек скорость продува через такие стены хоть и снижается до 0,1-1 см/сек, но тем не менее и это создаёт кратность воздухообмена в бане свыше 3-10 раз в час, что при слабой печи обуславливает полное выхолаживание бани. Кирпичные кладки в пустовку, дощатые стены в шпунт, плотные минерал- ватные плиты с сопротивлением воздухопроницанию на уровне 2м² час Па/кг способны защитить от потоков ветра 1м/сек (в смысле предотвращения избыточной кратности воздухообмена в бане), но оказываются недостаточно герметичными для порывов ветра 10 м/сек. А вот строительные конструкции с сопротивлением возухопроницанию 20 м²час Па/кг и более уже вполне приемлемы для бань и с точки зрения воздухообмена, и с точки зрения конвективных теплопотерь, но тем не менее не гарантируют малости конвективного переноса водяных паров и увлажнения стен.

В связи с этим возникает необходимость сочетания материалов с разной степенью воздухопроницания. Суммарное сопротивление воздухопроницанию многослойной конструкции подсчитывается очень легко: суммированием сопротивлений воздухопроницанию всех слоев R = ΣRi . Действительно, если массовый поток воздуха через все слои один и тот же G = ∆pi /Ri , то сумма перепадов давления на каждом слое равна перепаду давления на всей многослойной конструкции в целом ∆р = Σpi = ΣGRi = GΣRi = GR . Именно поэтому понятие «сопротивление» очень удобно для анализа последовательных (в пространстве и во времени) явлений, не только в части воздухопроницания, но и теплопередачи и даже электропередачи в электрических сетях. Так, например, если легкопродуваемую прослойку стружек насыпать на строительный картон, то суммарное сопротивление воздухопроницанию такой конструкции 64 м² час Па/кг будет определяться исключительно сопротивлением воздухопроницанию строительного картона.

В то же время ясно, что если картон будет иметь щели в местах нахлеста или разрывы (проткнутые отверстия), то сопротивление воздухопроницанию резко уменьшится. Этот способ монтажа соответствует иному предельному способу взаимной укладки воздухопроницаемых слоев - уже не последовательному, а параллельному (рис. 19). В этом случае более удобными для расчетов являются коэффициенты воздухопроницаемости (1/Rв ). Так, воздухопроницаемость стены будет равна G = S0 G0 +S2 G2 +S12 G12 , где Si - относительные площади зон с разными воздухопроницаемостями, то есть G = { + {S2 /R2 ] + } ∆p. Видно, что если сопротивление воздухопроницанию R0 сквозного отверстия очень мало (близко к нулю), то суммарный поток воздуха будет очень велик даже при тщательной ветрозащите других участков, то при очень больших R2 , S2 и S12 . Однако воздух в сквозном отверстии движется вовсе не «свободно» (то есть не с бесконечно большой скоростью) из-за наличия гидродинамического и вязкостного сопротивлений отверстия, а также (что бывает чрезвычайно существенно) из-за конечной скорости фильтрации через противоположную стену 3. Чтобы образовать сильную струю через открытое приточное отверстие (сквозняк), необходимо сделать вытяжное отверстие и в противоположной стене.

Рис. 19. Сочетание ветрозащитного и теплоизоляционного материалов со сквозными отверстиями (продухами, окнами). 1 - ветрозащитный материал, 2 - теплозащитный материал, Vo - набегающий поток воздуха, «свободно» проходящий через сквозное отверстие, но замедленно фильтрующийся через зоны, прикрытые теплозащитным материалом G2 или одновременно ветрозащитным и теплозащитным материалами G12. Величина реального воздушного потока GB определяется также воздухопроницаемостью стены 3.

В заключение отметим, что обычные деревенские бревенчатые стены бань, конопаченые мхом, имеют сопротивление воздухопроницанию на уровне (1-10) м²час Па/кг, причём воздух в основном просачивается через швы конопатки, а не через древесину. Воздухопроницаемость таких стен при перепаде давления ∆рв = 10 Па составляет (1-10) кг/м²час, а при порывах ветра 10 м/сек (∆рв =100) - до (10-100)кг/м²час. Это может превысить необходимый уровень вентиляции бань даже по санитарно-гигиеническим требованиям, соответствующим нахождению в бане большого количества людей. Во всяком случае такие стены имеют воздухопроницаемость, намного превышающую современный допустимый уровень по теплозащите СНиП 23-02-2003. Тщательная конопатка паклей (лучше с последующей пропиткой олифой), а также заделка швов современными эластичными силиконовыми герметиками может снизить воздухопроницаемость на порядок (в 10 раз). Значительно более эффективная ветрозащита стен может быть достигнута обивкой картоном (под вагонкой) или оштукатуриванием. Необходимый уровень воздухопроницаемости стен паровых бань в первую очередь определяется требованием осушения стен за счет консервирующей вентиляции.

Реальные окна и двери также могут внести значительный вклад в баланс воздухообмена. Ориентировочные величины воздухопроницаемости закрытых окон и дверей приведены в таблице 3.

Таблица 3: Нормируемая воздухопроницаемость ограждающих конструкций заводского изготовления по СНиП 23-02-2003

Таблица 4: Нормируемые теплотехнические показатели строительных материалов и изделий (СП23-101-2000)

Материал Плотность, кг/м³ Удельная теплоёмкость, кДж (кг град) Коэффициент теплопроводности, Вт/(м град) Коэффициент теплоусвоения, Вт/(м²​ град) Коэффициент паро-проницаемости, мг/(м часПа)
1 2 3 4 5 6
Воздух неподвижный 1,3 1,0 0,024 0,05 1.01
Пенополистирол ПСБ 150 1,34 0,05 0,89 0,05
100 1,34 0,04 0,65 0,05
40 1,34 0,04 0,41 0,06
Пенопласт ПХВ 125 1,26 0,05 0,86 0,23
Пенополиуретан 40 1,47 0,04 0,40 0,05
Плиты из резольно-формальдегидного пенопласта 40 1,68 0,04 0,48 0,23
Вспененный каучук «Аэрофлекс» 80 1,81 0,04 0,65 0,003
Пенополистирол экструзионный «Пеноплекс» 35 1,65 0,03 0,36 0,018
Плиты минераловатные (мягкие, полужесткие, жесткие) 350 0,84 0,09 1,46 0,38
100 0,84 0,06 0,64 0,56
50 0,84 0,05 0,42 0,60
Пеностекло 400 0,84 0,12 1,76 0,02
200 0,84 0,08 1,01 0,02
Плиты древесно-волокнистые и древесно-стружечные 1000 2,3 0,23 6,75 0,12
400 2,3 0,11 2,95 0,19
200 2,3 0,07 1,67 0,24
Арболит 800 2,3 0,24 6,17 0,11
300 2,3 0,11 2,56 0,30
Пакля 150 2,3 0,06 1,30 0,49
Плиты из гипса 1200 0,84 0,41 6,01 0,10
Листы гипсовые обшивочные (сухая штукатурка) 800 0,84 0,19 3,34 0,07
Засыпка из керамзита 800 0,84 0,21 3,36 0,21
200 0,84 0,11 1,22 0,26
Засыпка из доменного шлака 800 0,84 0,21 3,36 0,21
Засыпка из перлита вспученного 200 0,84 0,08 0,99 0,34
Засыпка из вермикулита вспученного 200 0,84 0,09 1,08 0,23
Песок для строительных работ 1600 0,84 0,47 6,95 0,17
Керамзитобетон 1800 0,84 0,80 10,5 0,09
Пенобетон 1000 0,84 0,41 6,13 0,11
300 0,84 0,11 1,68 0,26
Бетон на гравии из природного камня 2400 0,84 1,74 16,8 0,03
Раствор цементно-песчаный (швы кладки, штукатурка) 1800 0,84 0,76 9,6 0,09
Кладка из сплошного красного кирпича 1800 0,88 0,70 9,2 0,11
Кладка из сплошного силикатного кирпича 1800 0,88 0,76 9,77 0,11
Кладка из керамического пустотного кирпича 1600 0,88 0,58 7,91 0,14
1400 0,88 0,52 7,01 0,16
1200 0,88 0,47 6,16 0,17
Сосна и ель поперек волокон 500 2,3 0,14 3,87 0,06
вдоль волокон 500 2,3 0,29 5,56 0,32
Фанера клееная 600 2,3 0,15 4,22 0,02
Картон облицовочный 1000 2,3 0,21 6,20 0,06
Картон строительный многослойный 650 2,3 0,15 4,26 0,083
Гранит 2800 0,88 3,49 25,0 0,008
Мрамор 2800 0,88 2,91 22,9 0,008
Туф 2000 0,88 0,93 11,7 0,075
Листы асбестоцементные плоские 1800 0,84 0,47 7,55 0,03
Битумы нефтяные строительные 1400 1,68 0,27 6,80 0,008
1000 1,68 0,17 4,56 0,008
Рубероид 600 1,68 0,17 3,53 -
Линолеум поливинилхлоридный 1800 1,47 0,38 8,56 0,002
Чугун 7200 0,48 50 112,5 0
Сталь 7850 0,48 58 126,5 0
Алюминий 2600 0,84 221 187,6 0
Медь 8500 0,42 407 326,0 0
Стекло оконное 2500 0,84 0,76 10,8 0
Вода 1000 4,2 0,59 13,5 -

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 "Сопротивление паропроницанию ограждающих конструкций" СНиП II-3-79 (1998) "Строительная теплотехника".

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) - 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 "Теплотехнические свойства строительных материалов и изделий - Определение паропроницаемости". Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость "сухих" строительных материалов при влажности менее 70% и "влажных" строительных материалов при влажности более 70%. Помните, что при оставлении "пирогов" паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет "замокание" внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. - м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости "сухих" строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости "влажных" строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Сам термин «паропроницаемость» указывает на свойство материалов пропускать или задерживать в своей толще водяной пар. Таблица паропроницаемости материалов носит условный характер, поскольку приведенные расчетные значения уровня влажности и атмосферного воздействия не всегда соответствуют действительности. Точку росы возможно рассчитать согласно среднему значению.

У каждого материала свой процент паропроницаемости

Определение уровня проницаемости пара

В арсенале профессиональных строителей имеются специальные технические средства, которые позволяют с высокой точностью диагностировать проницаемость пара конкретного строительного материала. Чтобы вычислить параметр, применяются следующие средства:

  • приспособления, делающие возможным безошибочно установить толщину слоя строительного материала;
  • лабораторная посуда для выполнения исследований;
  • весы с максимально точными показаниями.

В этом видео вы узнаете о паропроницаемости:

С помощью такого инструментария можно корректно определить искомую характеристику. Так как данные экспериментов заносятся в таблицы паропроницаемости строительных материалов, во время составления плана жилища нет необходимости устанавливать паропроницаемость строительных материалов.

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости. Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

  • паропроницаемость бетона: 0,03 мг/(м*ч*Па);
  • паропроницаемость ДВП, ДСП: 0,12-0,24 мг/(м*ч*Па);
  • паропроницаемость фанеры: 0,02 мг/(м*ч*Па);
  • керамического кирпича: 0,14-0,17 мг/(м*ч*Па);
  • кирпича силикатного: 0,11 мг/(м*ч*Па);
  • рубероида: 0-0,001 мг/(м*ч*Па).

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Защита материалов при строительстве стен

Стройматериалы с высокой проницаемостью пара не могут в полной мере гарантировать отсутствие образования конденсата внутри стен. Чтобы не допустить скопления воды в глубине стен, следует избегать разности давления одной из составных частей смеси газообразных элементов водяного пара с обеих сторон стройматериала.

Обеспечить защиту от появления жидкости реально, используя ориентированно-стружечные плиты (ОСП), утепляющие материалы, такие как пеноплекс и пароизоляционная плёнка или мембрана, препятствующая просачиванию пара в теплоизоляцию. Одновременно с защитным слоем требуется организовать корректный воздушный зазор для вентиляции.

Если у стенового пирога нет достаточной способности поглощать пар, он не рискует быть разрушенным в результате расширения конденсата от низких температур. Основное требование - это предотвратить скопление влаги внутри стен и предоставить её беспрепятственное передвижение и выветривание.

Немаловажным условием является установка вентиляционной системы с принудительной вытяжкой, которая не даст скапливаться лишней жидкости и пару в помещении. Выполняя требования, можно защитить стены от образования трещин и повысить износоустойчивость жилища в целом.

Расположение термоизолирующих слоев

Для обеспечения лучших эксплуатационных характеристик многослойной конструкции сооружения пользуются следующим правилом: сторона с более высокой температурой обеспечивается материалами с повышенной сопротивляемостью к просачиванию пара с высоким коэффициентом теплопроводности.

Наружный слой должен обладать высокой паропроводимостью. Для нормальной эксплуатации ограждающего сооружения нужно, чтобы индекс внешнего слоя пятикратно превосходил значения внутреннего слоя. При соблюдении этого правила водяные пары, попавшие в теплый пласт стены, без особых усилий покинут его через более ячеистые стройматериалы. Пренебрегая этими условиями, внутренний слой стройматериалов сыреет, и его коэффициент теплопроводности становится выше.

Подбор отделки также играет важную роль на финальных этапах строительных работ. Правильно подобранный состав материала гарантирует ему результативное выведение жидкости во внешнюю среду, поэтому даже при минусовой температуре материал не разрушится.

Индекс проницаемости пара является ключевым показателем при расчете величины поперечного сечения утеплительного слоя. От достоверности произведенных вычислений будет зависеть, насколько качественным получиться утепление всего здания.

Чтобы создать в доме благоприятный для проживания климат, нужно учитывать свойства используемых материалов.Особое внимание стоит уделить паропроницаемости. Этим термином называется способность материалов пропускать пары. Благодаря знаниям о паропроницаемости можно правильно подобрать материалы для создания дома.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

  • дерево;
  • керамзит;
  • ячеистый бетон.

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара. Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

От чего зависит выбор утеплителя

Часто владельцы домов для утепления используют минеральную вату. Данный материал отличается высокой степенью проницаемости. По международным стандартам сопротивления паропроницаемости равен 1. Это означает, что минеральная вата в этом отношении практически не отличается от воздуха.

Именно об этом многие производители минеральной ваты упоминают достаточно часто. Часто можно встретить упоминание о том, что при утеплении кирпичной стены минеральной ватой ее проницаемость не снизится. Это действительно так. Но стоит отметить, что ни один материал, из которого изготавливаются стены, не способен выводить такое количество пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно учитывать, что многие отделочные материалы, которые используются при оформлении стен в комнатах, могут полностью изолировать пространство, не пропуская пар наружу. Из-за этого паропроницаемость стены значительно уменьшается. Именно поэтому минеральная вата незначительно влияет на обмен паром.

© 2024 pehorkapark.ru -- Виды беседок. Мебель. Веранды. Материал для беседки. Крыши