Почему в анализах воды используют аммиачный буфер. Механизм действия буферных растворов

Главная / Мебель

ВВЕДЕНИЕ

БУФЕРНЫЕ РАСТВОРЫ (буферные смеси, буферы) - растворы, содержащие буферные системы и обладающие вследствие этого способностью поддерживать рН на постоянном уровне. Их обычно готовят путем растворения в воде взятых в соответствующих пропорциях слабой кислоты и ее соли, образованной щелочным металлом, частичной нейтрализацией слабой кислоты сильной щелочью или слабого основания сильной кислотой, растворением смеси солей многоосновной кислоты. Величина рН приготовленных таким образом буферных растворов незначительно меняется с температурой. Интервал значений рН, в котором буферный раствор обладает устойчивыми буферными свойствами, лежит в пределах рК ± 1 (рК - отрицательный десятичный логарифм константы диссоциации слабой кислоты, входящей в его состав). Наиболее известными буферными растворами являются: глициновый Серенсена, ацетатный Вальполя, фосфатный Серенсена, боратный Палича, вероналовый Михаэлиса, карбонатный Кольтгофа, трис-буфер, универсальный вероналовый Михаэлиса и др.

В лабораторной практике буферные растворы применяются для сохранения активной реакции среды на определенном неизменном уровне и для определения водородного показателя (рН) - в качестве стандартных растворов с устойчивыми значениями рН и др.

БУФЕРНЫЕ СМЕСИ

Если к раствору какой-либо кислоты или щелочи прибавить воду, то, разумеется, концентрация ионов водорода или гидроксила соответственно уменьшается. Но если прибавить некоторое количество воды к смеси уксусной кислоты и ацетата натрия или к смеси гидроокиси аммония и хлорида аммония, то концентрация ионов водорода и гидроксила в этих растворах не изменится.

Свойства некоторых растворов сохранять неизменной концентрацию ионов водорода при разбавлении, а также при добавлении небольших количеств сильных кислот или щелочей известно под названием буферного действия.

Растворы, содержащие одновременно какую-либо слабую кислоту и ее соль или какое-либо слабое основание и его соль и оказывающие буферное действие, называют буферными растворами. Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Присутствие в растворе слабой кислоты или слабого основания и их солей уменьшает влияние разбавления или действия других кислот и основании на рН раствора.

Такими буферными растворами являются следующие смеси СН 3 СООН+СН 3 С OON а, NH 4 OH + NH 4 Cl , Na 2 CO 3 + NaHCO 3 и др.

Буферный растворы, представляющие собой смеси слабых кислот и их солей, как правило имеют кислую реакцию (рН<7). Например, буферная смесь 0,1М раствора СН 3 СООР + 0,1М раствора СН 3 СО ONa имеет рН = 4,7.

Буферные растворы, представляющие собой смеси слабых основании и их солей, как правило, имеют щелочную реакцию (рН>7). Например, буферная смесь 0,1М раствора N Н 4 ОН + 0,1М раствора N Н 4 С1 имеет рН = 9,3.

Кислотно-основные буферные растворы

В широком смысле буферными называют системы, поддерживающие определенное значение какого-либо параметра при изменении состава. Буферные растворы могут быть

– кислотно-основными - поддерживают постоянное значение рН при добавлении небольших количеств кислоты или основания.

Окислительно-восстановительными – сохраняют постоянным потенциал системы при введении окислителей или восстановителей.

известны металлобуферные растворы, которые поддерживают постоянное значение рН.

Во всех случаях буферный раствор представляет собой сопряженную пару. В частности, кислотно-основные буферные растворы содержат сопряженную кислотно-основную пару. Буферное действие этих растворов обусловлено наличием кислотно-основного равновесия общего типа:

НА ↔ Н + + А -

кислота сопряженное

Основание

В + Н + ↔ ВН +

О снование сопряженная

Кислота

Так как в данном разделе рассматриваются только кислотно-основные буферные растворы, будем называть их буферными, опуская в названии «кислотно-основные».

Буферными растворами называют растворы, поддерживающие постоянное значение рН при разбавлении и добавлении небольших количеств кислоты или основания.

Классификация буферных систем

1. смеси растворов слабых кислот и их солей. Например, ацетатный буферный раствор.

2. смеси растворов слабых оснований и их солей. Например, аммонийный буферный раствор.

3. смеси растворов солей многоосновных кислот различной степени замещения. Например, фосфатный буферный раствор.

4. ионы и молекулы амфолитов. К ним относятся, например, аминокислоты и белковые буферные системы. Находясь в изоэлектрическом состоянии, аминокислоты и белки не являются буферными. Буферное действие проявляется только тогда, когда к ним добавляется некоторое количество кислоты или щелочи. При этом образуется смесь двух форм белка: а) слабая «белок кислота» + соль этой слабой кислоты; б) слабое «белок основание» + соль этого слабого основания. Таким образом, этот тип буферных систем можно отнести к буферным системам первого или второго типа.

Расчет рН буферных растворов

В основе расчета рН буферных систем лежит закон действующих масс для кислотно-основного равновесия. Для буферной системы, состоящей из слабой кислоты и ее соли, например, ацетатной, концентрацию ионов H + легко вычислить, исходя из константы равновесия уксусной кислоты:

CH 3 COOH ↔ CH 3 COO - + H +

(1).

Из (1) следует, что концентрация ионов водорода равна

(2)

В присутствии CH 3 COONa кислотно-основное равновесие уксусной кислоты сдвинуто влево. Поэтому концентрация недиссоциированной уксусной кислоты практически равна концентрации кислоты, т.е. [СН 3 COOH ] = с кисл.

Главный источник ацетат-ионов – сильный электролит CH 3 COONa :

CH 3 COONa → Na + + CH 3 COO - ,

Поэтому можно принять, что [ CH 3 COO - ] = с соли . С учетом сделанных допущений уравнение (2) принимает вид:

Отсюда получают уравнение Гендерсона-Хассельбаха для буферных систем, состоящих из слабой кислоты и ее соли:

(3)

Для буферной системы, состоящей из слабого основания и его соли, например, аммиачной, концентрацию ионов водорода в растворе можно рассчитать исходя из константы диссоциации слабого основания.

NH 3 × H 2 O = NH 4 OH ↔ NH 4 + + OH -

(4)

Выразим концентрацию ионов OH - из ионного произведения воды

(5)

и подставим в (4).

(6)

Из (6) следует, что концентрация ионов водорода равна

(7)

В присутствии NH 4 Cl кислотно-основное равновесие сдвинуто влево. Поэтому концентрация недиссоциированного аммиака практически равна концентрации аммиака, т.е. [ NH 4 OH ] = с осн.

Главный источник катионов аммония – сильный электролит NH 4 Cl :

NH 4 Cl → NH 4 + + Cl - ,

Поэтому можно принять, что [ NH 4 + ] = с соли . С учетом сделанных допущений уравнение (7) принимает вид:

(8)

Отсюда получают уравнение Гендерсона-Хассельбаха для буферных систем, состоящих из слабого основания и его соли:

(9)

Аналогичным образом можно рассчитать рН буферной системы, состоящей из смеси растворов солей многоосновных кислот различной степени замещения, например, фосфатной, состоящей из смеси растворов гидрофосфата (Na 2 HPO 4 ) и дигидрофосфата (NaH 2 PO 4 ) натрия. В основе ее действия лежит кислотно-основное равновесие:

H 2 PO 4 - ↔ Н + + HPO 4 2-

Слабая кислота сопряженное основание

(10)

Выразив из (10) концентрацию ионов водорода и сделав следующие допущения:

[ H 2 PO 4 - ] = c (H 2 PO 4 - ); [ HPO 4 2- ] = c (HPO 4 2- ), получим:

(11).

Прологарифмировав это выражение и поменяв знаки на противоположные, получим уравнение Гендерсона-Хассельбаха для рассчета рН фосфатной буферной системы

(12),

Где рК b (H 2 PO 4 - ) – отрицательный десятичный логарифм константы диссоциации

фосфорной кислоты по второй ступени; с (H 2 PO 4 - ) и с (HPO 4 2- ) соответственно концентрации кислоты и соли.

Свойства буферных растворов

Значение рН буферных растворов остается неизменным при разбавлении, что следует из уравнения Гендерсона-Хассельбаха. При разбавлении буферного раствора водой концентрации обоих компонентов смеси уменьшаются в одинаковое число раз. Следовательно, величина рН при этом не должна изменяться. Однако опыт показывает, что некоторое изменение рН, хотя и незначительное, все же происходит. Это объясняется тем, что уравнение Гендерсона-Хассельбаха является приближенным и не учитывает межионных взаимодействий. При точных расчетах следует учитывать изменение коэффициентов активности сопряженных кислоты и основания.

Буферные растворы мало изменяют рН при добавлении небольших количеств кислоты или основания. Способность буферных растворов поддерживать постоянство рН при добавлении к ним небольших количеств сильной кислоты или сильного основания, основана на том, что одна составная часть буферного раствора может взаимодействовать с H + прибавляемой кислоты, а другая с OH - прибавляемого основания. Вследствие этого буферная система может связывать как H + , так и OH - и до определенного предела сохранять постоянство величины рН. Продемонстрируем это на примере формиатной буферной системы, представляющей собой сопряженную кислотно-основную пару HCOOH / HCOO - . Равновесие в растворе формиатного буферного раствора можно представить уравнением:

HCOOH ↔ HCOO - + H +

При добавлении сильной кислоты сопряженное основание HCOO - связывает добавленные ионы H + , превращаясь в слабую муравьиную кислоту:

HCOO - + H + ↔ HCOOH

В соответствии с принципом Ле Шателье равновесие смещается влево.

При добавлении щелочи протоны муравьиной кислоты связывают добавленные ионы ОН - в молекулы воды:

HCOOH + ОН - → HCOO - + H 2 O

Кислотно-основное равновесие согласно Ле Шателье смещается вправо.

В обоих случаях происходят небольшие изменения в соотношении HCOOH / HCOO - , но логарифм этого соотношения меняется мало. Следовательно, незначительно меняется и рН раствора.

Сущность буферного действия

Действие буферных растворов основано на том, что отдельные компоненты буферных смесей связывают ионы водорода или гидроксила вводимых в них кислот и основании с образованием слабых электролитов. Например, если к буферному раствору, содержащему слабую кислоту НА n и соль этой кислоты Kt А n , прибавить щелочь, то произойдет реакция образования слабого электролита-воды:

Н + + ОН → Н 2 О

Следовательно, если к буферному раствору, содержащему кислоту, прибавить щелочь, то ионы водорода, образующиеся при электролитической диссоциации кислоты НА n , связываются с ионами гидроксила прибавленной щелочи, образуя слабый электролит-воду. Вместо израсходованных ионов водорода, вследствие последующей диссоциации кислоты НА n , появляются новые ионы водорода. В результате прежняя концентрация Н + - ионов в буферном растворе восстановятся до первоначального значения.

Если к указанной буферной смеси прибавить сильную кислоту, то произойдет реакция:

Н + + А n - → НА n

т.е. А n - - ионы, образующиеся при электролитической диссоциации соли К t А n , соединяясь с ионами водорода прибавленной кислоты, образуют молекулы слабой кислоты. Поэтому концентрация ионов водорода от прибавленной сильной кислоты к буферной смеси практически не изменится. Подобным же образом можно объяснить действие других буферных смесей.

Значение рН в буферных растворах

Меняя соотношения и можно получить буферные

растворы, отличающиеся плавным изменением рН от них минимально возможных значений. В водном растворе слабой кислоты

[ Н + ] = √K HAn * C HAn

откуда

pH = − lg [ Н + ] = − − lg K HAn − − lg C HAn

Но так как K HAn представляет собой постоянную величину, то ее лучшее представить в виде pK HAn т.е. показателя константы электролитической диссоциации: pK Han = − lg K HAn .

Тогда получим, что в водном растворе слабой кислоты:

рН = − lg [Н + ] = − − pK HAn − − pC HAn

По мере прибавления к водному раствору слабой кислоты ее соли рН раствора будет меняться.

Согласно уравнению, в растворе, содержащем смесь слабой кислоты и ее соли [Н + ] = K HAn

то

рН = − lg [Н + ] = − lg K HAn − lg C HAn + lg C Kt А n .

Аналогично выводим формулу применительно к слабым основаниям:

[ОН ] = √K KtOH * C KtOH

pOH = − lg [ ОН ] = − − lg K KtOH − − lg C KtOH

Концентрацию ионов водорода также выражают следующей формулой [Н + ] = , поэтому

рН = pK w − (− pK KtOH − − lg C KtOH )

Согласно уравнению, в растворе, содержащем смесь слабого основания и его соли

[ Н + ] =

т . е .

рН = − lg [ Н + ] = − lg K w + lg K KtOH − lgC Kt А n + lg C KtOH.

Нет никакой необходимости запоминать выведенные формулу значении рН, так как они очень легко выводятся путем логарифмирования простых формул, выражающих значение [Н + ].

Буферная емкость

Способность буферных растворов поддерживать постоянство значения рН небезгранична и зависит от качественного состава буферного раствора и концентрации его компонентов. При добавлении к буферному раствору значительных количеств сильной кислоты или щелочи наблюдается заметное изменение рН. причем для различных буферных смесей, отличающихся друг от друга по составу, отличающихся друг от друга по составу, буферное действие неодинаково. Следовательно, буферные смеси можно различать по силе оказываемого ими сопротивления по отношению к действию кислот и щелочей, вводимых в буферный раствор в одинаковых количествах и определенной концентрации. Предельное количество кислоты или щелочи определенной концентрации (в моль/л или г-экв/л), которое можно добавить к буферному раствору, чтобы значение рН его изменилось только на одну единицу, называют буферной емкостью.

Если величина [Н + ] одного буферного раствора изменяется при добавленной сильной кислоты меньше, чем величина [Н + ] другого буферного раствора при добавлении того же количества кислоты, то первая смесь обладает большей буферной емкостью. Для одного и того же буферного раствора буферная емкость тем больше, чем выше концентрация его компонентов.

Буферные свойства растворов сильных кислот и оснований.

Растворы сильных кислот и оснований при достаточно высокой концентрации тоже обладают буферным действием. Сопряженными системами в этом случае являются Н 3 О + /Н 2 О – для сильных кислот и ОН - /Н 2 О – для сильных оснований. Сильные кислоты и основания полностью диссоциированы в водных растворах и поэтому характеризуются высокой концентрацией ионов гидроксония или гидроксил - ионов. Добавление к их растворам небольших количеств сильной кислоты или сильного основания, поэтому оказывает лишь незначительное влияние на рН раствора.

Приготовление буферных растворов

1. Разбавлением в мерной колбе соответствующих фиксаналов.

2. Смешением рассчитанных по уравнению Гендерсона-Хассельбаха количеств подходящих сопряженных кислотно-основных пар.

3. Частичной нейтрализацией слабой кислоты сильной щелочью или слабого основания сильной кислотой.

Так как буферные свойства проявляются очень слабо, если концентрация одного компонента в 10 раз и более отличается от концентрации другого, буферные растворы часто готовят смешением растворов равной концентрации обоих компонентов или прибавлением к раствору одного компонента соответствующего количества реагента, приводящего к образованию равной концентрации сопряженной формы. В справочной литературе имеются подробные рецепты приготовления буферных растворов для различных значений рН.

Применение буферных растворов в химическом анализе

Буферные растворы широко применяют в химическом анализе в тех случаях, когда по условиям опыта химическая реакция должна протекать при соблюдении точного значения рН, не меняющегося при разбавлении раствора или при добавлении к нему других реагентов. Например, при проведении реакции окисления-восстановления, при осаждении сульфидов, гидроокисей, карбонатов, хроматов, фосфатов и др.

Приведем некоторые случаи использования их в целях анализа:

Ацетатный буферный раствор (СНзСООН + СН 3 СОО Na ; рН = 5) применяют при осаждении осадков, неосаждаемых в кислых или щелочных растворах. Вредное влияние кислот подавляет ацетат натрия, который вступает в реакцию с сильной кислотой. Например:

НС1 + СН 3 СОО N а → СН 3 СООН + Na С1

или в ионной форме

Н + + СН 3 СОО → СН 3 СООН.

Аммиачно -аммонийный буферный раствор (N Н 4 ОН + N Н 4 С1; рН = 9) применяют при осаждении карбонатов бария, стронция, кальция и отделения их от ионов магния; при осаждении сульфидов никеля, кобальта, цинка, марганца, железа; а также при выделении гидроокисей алюминия, хрома, бериллия, титана, циркония, железа и т.п.

Формиатный буферный раствор (НСООН + НСОО N а; рН = 2) применяют при отделении ионов цинка, осаждаемых в виде ZnS в присутствии ионов кобальта, никеля, марганца, железа, алюминия и хрома.

Фосфатный буферный раствор (N а 2 НРО 4 + N аН 2 РО; рН = 8) использует при проведении многих реакции окисления-восстановления.

Для успешного применения буферных смесей в целях анализа необходимо помнить о том, что не всякая буферная смесь пригодна для анализа. Буферную смесь выбирают в зависимости от ее назначения. Она должна удовлетворять определенному качественному составу, а ее компоненты должны присутствовать в растворе в определенных количествах, так как действие буферных смесей зависит от соотношения концентрации их компонентов.

Выше перечисленное можно представить в виде таблицы.

Буферные растворы, применяемые в анализе

Буферная смесь

Состав смеси

(при молярном соотношении 1:1)

рН

Формиатная

Муравьиная кислота и формиат натрия

Бензоатная

Бензойная кислота и бензоат аммония

Ацетатная

Уксусная кислота и ацетат натрия

Фосфатная

Одназамещенный и двухзамещенный фосфат натрия

Аммонийная

Гидроксид аммония и хлорид аммония

Буферным действием обладают также смеси кислых солей с различной замещенностью водорода металлом. Например, в буферной смеси дигидрофосфата и гидрофосфата натрия первая соль играет роль слабой кислоты, а вторая роль ее соли.

Варьируя концентрацию слабой кислоты и ее соли, удается получить буферные растворы с заданными величинами рН.

В животных и растительных организмах также действуют сложные буферные системы, поддерживающие постоянными рН крови, лимфы и других жидкостей. Буферными свойствами обладает и почва, которой свойственно противодействовать внешним факторам, изменяющим рН почвенного раствора, например при введении в почву кислот или основании.

ЗАКЛЮЧЕНИЕ

Итак, буферными растворами называют растворы, поддерживающие постоянное значение рН при разбавлении и добавлении небольших количеств кислоты или основания. Важным свойством буферных растворов является их способность сохранять постоянное значение рН при разбавлении раствора. Растворы кислот и оснований не могут называться буферными растворами, т.к. при разбавлении их водой рН раствора изменяется. Наиболее эффективные буферные растворы готовят из растворов слабой кислоты и ее соли или слабого основания и его соли

Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Буферные растворы играют важную роль во многих технологических процессах. Они используются, например, при электрохимическом нанесении защитных покрытий, в производстве красителей, кожи, фотоматериалов. Широко используют буферные растворы в химическом анализе и для калибровки рН-метров.

Многие биологические жидкости являются буферными растворами. Например, рН крови в организме человека поддерживается в пределах от 7,35 до 7,45; желудочного сока от 1,6 до 1,8; слюны от 6,35 до 6,85. Компонентами таких растворов являются карбонаты, фосфаты и белки. В бактериологических исследованиях при выращивании бактерий тоже приходится использовать буферные растворы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Крешков А.П. Основы аналитической химии. Кн.1. - М: Химия, 1965г. -498 с.

2. Цитович И.К. Курс аналитической химии: Учебник для вузов. - СПб.: «Лань», 2007г.- 496 с.

3. Крешков А.П., Ярославцев А.А. Курс аналитической химии. Кн.1. Качественный анализ.- 2-е изд.переработанное. - М.:Химия, 1964г - 432 с.

4. Химия: справочник для старшеклассников и поступающих в вузы / Под ред. Лидии Р.А., Аликберова Л.Ю. - М.:АСТ-ПРЕСС ШКОЛА, 2007г. -512с.

5. Осипов Ю.С., Большая Российская энциклопедия: в 30 т. Т.4.- М.: Большая Российская энциклопедия 2006г. - 751 с.

6. Михайленко Я.И., Введение в химический анализ, Госхимтехиздат, 1933г.

Классификация буферных растворов

Различают естественные и искусственные буферные растворы. Естественным буферным раствором является кровь, содержащая гидрокарбонатную, фосфатную, белковую, гемоглобиновую и кислотную буферные системы. Искусственным буферным раствором может быть ацетатный буфер, состоящий из СН3СООН.

Буферные растворы могут иметь кислую реакцию среды (рН < 7) или щелочную (рН > 7). .

Буферные системы могут быть четырех типов:

1) Слабая кислота и ее анион:

Например: ацетатная буферная система

СН 3 СООNa и СН 3 СООН, область действия рН = 3, 8 - 5, 8.

2) Слабое основание и его катион:

Например: аммиачная буферная система

NH 3 и NH 4 Cl, область действия рН = 8, 2 - 10, 2.

3) Анионы кислой и средней соли:

Например: карбонатная буферная система

Na 2 CO 3 и NaHCO 3 , область действия рН = 9, 3 - 11.

4) Смесь двух кислых солей:

Например: фосфатная буферная система

Na 2 HP0 4 и NaH 2 PO 4 , область действия рН = 7,4 - 8 .

Механизм действия буферных растворов

Разберемся, на чем основаны свойства буферных растворов, на примере буферной смеси уксусной кислоты и ацетата натрия.

1) Разбавление водой

Уксусная кислота -- кислота слабая, кроме того, ее диссоциация еще уменьшается благодаря присутствию ацетата натрия (влияние одноименного иона). буферный раствор гидроксид тетраборат

Предположим, что рассматриваемый раствор разбавляют водой в 10 или в 20 раз. Казалось бы, вследствие сильного уменьшения концентрации уксусной кислоты концентрация ионов Н + должна уменьшиться, но этого не происходит, потому что с разбавлением увеличивается степень диссоциации уксусной кислоты, так как уменьшается концентрация ацетата натрия, подавляющего диссоциацию уксусной кислоты этого раствора. Следовательно, при разбавлении водой рН практически не изменится.

2) Прибавление сильной кислоты

При добавлении к буферной смеси небольшого количества сильной кислоты, например, соляной, происходит реакция:

CH 3 COONa + НСl = NaCl + СН 3 СООН.

Ионы Н + , поступающие в раствор, будут связываться в молекулы уксусной кислоты с малой степенью диссоциации. Таким образом, концентрация ионов Н+ почти не увеличится и рН раствора практически не изменится

Если такое же количество кислоты прибавить в чистую воду, все ионы Н + останутся в растворе, концентрация ионов водорода увеличится во много раз и рН раствора заметно изменится. А водород, как известно - Самый распространенный химический элемент.

3) Прибавление небольшого количества щелочи

Прибавленная в буферную смесь щелочь вступает в реакцию с уксусной кислотой:

СН 3 СООН + NaOH = CH 3 COONa + Н 2 O.

Ионы ОН - связываются ионами Н + уксусной кислоты в недиссоциированные молекулы воды. Однако убыль этих ионов пополняется в результате диссоциации молекул уксусной кислоты. Таким образом, рН раствора после прибавления щелочи практически не изменится.

Если же прибавить щелочь в чистую воду, все ионы ОН - останутся в растворе. Концентрация ионов ОН - резко возрастет, концентрация ионов Н + соответственно уменьшится и рН раствора изменится заметно.

Аналогичные явления наблюдаются при добавлении небольших количеств кислот и щелочей к другим буферным смесям .

Механизм буферного действия (на примере аммиачного буфера)

Механизм действия буферной системы рассмотрим на примере аммиачной буферной системы: NН 4 ОН (NН 3 х Н 2 О) + NН 4 С1.

Гидроксид аммония - слабый электролит, в растворе частично диссоциирует на ионы:

NН 4 ОН <=> NН 4 + + ОН -

При добавлении к раствору гидроксида аммония хлорида аммония, соль как сильный электролит практически полностью диссоциирует на ионы NН 4 С1 > NН 4 + + С1 - и подавляет диссоциацию основания, равновесие которого смещается в сторону обратной реакции. Поэтому С (NН 4 ОН) ? С (основания); а С (NН 4 +) ? С (соли).

Если в буферном растворе С (NН 4 ОН) = С (NН 4 С1), то рН = 14 - рКосн. = 14 + lg 1,8.10-5 = 9,25.

Способность буферных смесей поддерживать практически постоянное значение рН раствора основана на том, что входящие в них компоненты связывают ионы Н+ и ОН-, вводимые в раствор или образующиеся в результате реакции, протекающей в этом растворе. При добавлении к аммиачной буферной смеси сильной кислоты, ионы Н+ будут связываться молекулами аммиака или гидроксида аммония, а не увеличивать концентрацию ионов Н+ и уменьшать рН раствора.

При добавлении щелочи ионы ОН - будут связывать ионы NН 4 +, образуя при этом малодиссоциированное соединение, а не увеличивать рН раствора.

Буферное действие прекращается, как только одна из составных частей буферного раствора (сопряженное основание или сопряженная кислота) полностью израсходуется.

Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.

Свойство растворов сохранять значение рН в определенных пределах при добавлении небольших количеств кислоты или щелочи называется буферным действием. Растворы, обладающие буферным действием, называются буферными смесями.

Для случая титрования: щавелевая кислота и гидроксид калия, изобразите кривую титрования, укажите случай титрования, скачок титрования, точку эквивалентности, используемые индикаторы

Скачок титрования: pH = 4-10. Максимальная ошибка в% - меньше 0.4.

Индикаторы - тимолфталеин, фенолфталеин.

Восстановитель, какие элементы периодической системы элементов могут быть восстановителями и почему?

Восстановитель - это вещество, которое в ходе реакции отдает электроны, т.е. окисляется.

Восстановителями могут быть нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в состоянии промежуточной степени окисления.

Нейтральные атомы. Типичными восстановителями являются атомы, на внешнем энергетическом уровне которых имеется от 1 до 3 электронов. К этой группе восстановителей относятся металлы, т.е. s-, d - и f-элементы. Восстановительные свойства проявляют и неметаллы, например водород и углерод. В химических реакциях они отдают электроны.

Сильными восстановителями являются атомы с малым потенциалом ионизации. К ним относятся атомы элементов двух первых главных подгрупп периодической системы элементов Д.И. Менделеева (щелочные и щелочноземельные металлы), а также Аl, Fe и др.

В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением радиуса атомов. Так, например, в ряду Li - Fr более слабым восстановителем будет Li, а сильным - Fr, который вообще является самым сильным восстановителем из всех элементов периодической системы.

Отрицательно заряженные ионы неметаллов. Отрицательно заряженные ионы образуются присоединением к нейтральному атому неметалла одного или несколько электронов:

Так, например, нейтральные атомы серы, йода, имеющие на внешних уровнях 6 и 7 электронов, могут присоединить соответственно 2 и 1 электрон и превратиться в отрицательно заряженные ионы.

Отрицательно заряженные ионы являются сильными восстановителями, так как они могут при соответствующих условиях отдавать не только слабо удерживаемые избыточные электроны, но и электроны со своего внешнего уровня. При этом, чем более активен неметалл как окислитель, тем слабее его восстановительная способность в состоянии отрицательного иона. И наоборот, чем менее активен неметалл как окислитель, тем активнее он в состоянии отрицательного иона как восстановитель.

Восстановительная способность отрицательно заряженных ионов при одинаковой величине заряда растет с увеличением радиуса атома. Поэтому, например, в группе галогенов ион йода обладает большей восстановительной способностью, чем ионы брома и хлора, a фтор - восстановительных свойств совсем не проявляет.

Положительно заряженные ионы металлов в низшей степени окисления. Ионы металлов в низшей степени окисления образуются из нейтральных атомов в результате отдачи только части электронов с внешней оболочки. Так, например, атомы олова, хрома, железа, меди и церия, вступая во взаимодействие с другими веществами, вначале могут отдать минимальное число электронов.

Ионы металлов в низшей степени окисления могут проявлять восстановительные свойства, если у них возможны состояния с более высокой степенью окисления.

В уравнении ОВР расставьте коэффициенты методом электронного баланса. Укажите окислитель и восстановитель.

K 2 Cr 2 O 7 + 6FeSO 4 + 7H 2 SO 4 = K 2 SO 4 + Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + 7H 2 O

1 Cr 2 +6 +3е x 2 Cr 2 +3 окислитель

6 Fe +2 - 1е Fe +3 восстановитель

2KMnO 4 + 5H 2 S + 3H 2 SO 4 = K 2 SO 4 + 2MnSO4 + 5S + 8H 2 O

2 Mn +7 + 5е Mn +2 окислитель

5 S -2 - 2е S 0 восстановитель

Определение.

В лабораторной практике часто приходится работать с растворами, которые имеют определенное значение рН. Такие растворы называют буферными.

Буферные растворы – растворы, рН которых практически не изменяется при добавлении к ним небольших количеств кислот и оснований или при их разбавлении.

Буферные растворы могут быть четырех типов:

1. Слабая кислота и её соль. Например, ацетатный буферный раствор СН 3 СООН + СН 3 СООNа (рН=4,7).

2. Слабое основание и его соль. Например, аммиачный буферный раствор NH 4 OH + NH 4 Cl (рН=9,2).

3. Раствор двух кислых солей. Например, фосфатный буферный раствор NaH 2 PO 4 + Na 2 HPO 4 (рН=8). В этом случае соль играет роль слабой кислоты.

Аминокислотные и белковые буферные растворы.

Механизм действия.

Действие буферных растворов основано на том, что ионы или молекулы буфера связывают ионы Н + или ОН - вводимых в них кислот или щелочей с образованием слабых электролитов. Например, если к ацетатному буферному раствору СН 3 СООН + СН 3 СООNа добавить соляную кислоту, то произойдет реакция:

СН 3 СООNа + НСl = СН 3 СООН + NаСl

СН 3 СОО - + Н + = СН 3 СООН

СН 3 СОО - ионы, взаимодействуя с катионами Н + соляной кислоты, образуют молекулы уксусной кислоты, в растворе не происходит накопление Н + , поэтому концентрация их практически не изменяется, а следовательно, не изменяется значение рН раствора.

При добавлении к ацетатному буферному раствору щелочи (например, NaОН) происходит реакция:

СН 3 СООН + NaОН = СН 3 СООNа + Н 2 О

СН 3 СООН + ОН - = СН 3 СОО - + Н 2 О

Катионы Н + уксусной кислоты соединяются с ОН - ионами щелочи, образуя воду. Концентрация кислоты уменьшается. Вместо израсходованных катионов Н + , в результате диссоциации уксусной кислоты СН 3 СООН, вновь появляются катионы Н + и их прежняя концентрация восстанавливается и значение рН раствора не изменяется.

Буферная емкость.

Всякий буферный раствор практически сохраняет постоянство рН лишь до прибавления определенного количества кислоты или щелочи, то есть обладает определенной буферной емкостью .

Буферная емкость – то предельное количество (моль) сильной кислоты или щелочи, которое можно добавить к 1 л буферного раствора, чтобы рН его изменился не более чем на единицу.

Приготовление.

Буферные свойства проявляются очень слабо, если концентрация одного компонента в 10 раз и более отличается от концентрации другого. Поэтому буферные растворы часто готовят смешением растворов равной концентрации обоих компонентов либо прибавлением к раствору одного компонента соответствующего количества реагента, приводящего к образованию равной концентрации сопряженной формы.

Для приготовления аммиачной буферной смеси смешивают 100 мл раствора NH 4 Cl с массовой долей его 10% и 100 мл раствора NH 4 OH с массовой долей 10% и разбавляют полученную смесь дистиллированной водой до 1 л.

Применение.

Буферные растворы широко применяются в химическом анализе, биохимическом анализе для создания и поддержания определенного значения рН среды при проведении реакций.

Например, ионы Ва 2+ отделяют от ионов Са 2+ осаждением дихромат-ионами Сr 2 О 7 2- в присутствии ацетатного буферного раствора; при определении многих катионов металлов с помощью трилона Б методом комплексонометрии используют аммиачный буферный раствор.

Буферные растворы обеспечивают постоянство биологических жидкостей и тканей. Главными буферными системами в организме являются гидрокарбонатная, гемоглобиновая, фосфатная и белковая. Причем, действие всех буферных систем взаимосвязано. Поступившие из вне или образовавшиеся в процессе обмена веществ ионы водорода связываются одним из компонентов буферных систем. Однако, при некоторых заболеваниях может происходить изменение значения рН крови. Смещение значения рН крови в кислую область от нормальной величины рН 7,4 называется ацидозом , в щелочную область – алкалозом. Ацидоз возникает при тяжелых формах сахарного диабета, длительной физической работе и при воспалительных процессах. При тяжелой почечной или печеночной недостаточности или при нарушении дыхания может возникнуть алкалоз.

© 2024 pehorkapark.ru -- Виды беседок. Мебель. Веранды. Материал для беседки. Крыши